\(\int \frac {x}{(d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [472]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 139 \[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {2 d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \left (c d^2-a e^2\right ) (d+e x)}+\frac {\text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {c} \sqrt {d} e^{3/2}} \]

[Out]

arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/e^(3/2)/c
^(1/2)/d^(1/2)-2*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e/(-a*e^2+c*d^2)/(e*x+d)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {806, 635, 212} \[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt {c} \sqrt {d} e^{3/2}}-\frac {2 d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e (d+e x) \left (c d^2-a e^2\right )} \]

[In]

Int[x/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e*(c*d^2 - a*e^2)*(d + e*x)) + ArcTanh[(c*d^2 + a*e^2 + 2*
c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])]/(Sqrt[c]*Sqrt[d]*e^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d*g - e*f)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/((2*c*d - b*e)*(m + p + 1))), x] + Dist[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((L
tQ[m, -1] &&  !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \left (c d^2-a e^2\right ) (d+e x)}+\frac {\int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{e} \\ & = -\frac {2 d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \left (c d^2-a e^2\right ) (d+e x)}+\frac {2 \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{e} \\ & = -\frac {2 d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \left (c d^2-a e^2\right ) (d+e x)}+\frac {\tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {c} \sqrt {d} e^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.94 \[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \left (-\frac {d^{3/2} \sqrt {e} (a e+c d x)}{c d^2-a e^2}+\frac {\sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{\sqrt {c}}\right )}{\sqrt {d} e^{3/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[x/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*(-((d^(3/2)*Sqrt[e]*(a*e + c*d*x))/(c*d^2 - a*e^2)) + (Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[e]*Sqr
t[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])])/Sqrt[c]))/(Sqrt[d]*e^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 0.56 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.94

method result size
default \(\frac {\ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{e \sqrt {c d e}}+\frac {2 d \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{e^{2} \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\) \(131\)

[In]

int(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)+2*d/
e^2/(a*e^2-c*d^2)/(x+d/e)*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.39 (sec) , antiderivative size = 443, normalized size of antiderivative = 3.19 \[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [-\frac {4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} c d^{2} e - {\left (c d^{3} - a d e^{2} + {\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}{2 \, {\left (c^{2} d^{4} e^{2} - a c d^{2} e^{4} + {\left (c^{2} d^{3} e^{3} - a c d e^{5}\right )} x\right )}}, -\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} c d^{2} e + {\left (c d^{3} - a d e^{2} + {\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right )}{c^{2} d^{4} e^{2} - a c d^{2} e^{4} + {\left (c^{2} d^{3} e^{3} - a c d e^{5}\right )} x}\right ] \]

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*c*d^2*e - (c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)*sqrt(c*
d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)
*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x))/(c^2*d^4*e^2 - a*c*d^2*e^4 + (c^2*d^3
*e^3 - a*c*d*e^5)*x), -(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*c*d^2*e + (c*d^3 - a*d*e^2 + (c*d^2*e -
a*e^3)*x)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt
(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)))/(c^2*d^4*e^2 - a*c*d^2*e^4 + (c^2*d^3*e
^3 - a*c*d*e^5)*x)]

Sympy [F]

\[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {x}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \]

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(x/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-2)]

Exception generated. \[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%{[%%%{1,[0,0,5]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[2,
2]%%%}+%%%{

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {x}{\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

[In]

int(x/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int(x/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)